
PTable Documentation
Release latest

May 02, 2015

Contents

1 Row by row 3

2 Column by column 5

3 Mixing and matching 7

4 Importing data from a CSV file 9

5 Importing data from a database cursor 11

6 Getting data out 13

7 Displaying your table in ASCII form 15
7.1 Printing . 15
7.2 Stringing . 15
7.3 Controlling which data gets displayed . 16
7.4 Changing the alignment of columns . 16
7.5 Sorting your table by a field . 17

8 Changing the appearance of your table - the easy way 19
8.1 Setting a table style . 19

9 Changing the appearance of your table - the hard way 21
9.1 Style options . 21
9.2 Setting style options for the long term . 22
9.3 Changing style options just once . 22

10 Displaying your table in HTML form 23
10.1 Styling HTML tables . 23
10.2 Setting HTML attributes . 24

11 Miscellaneous things 25
11.1 Copying a table . 25

i

ii

PTable Documentation, Release latest

TUTORIAL ON HOW TO USE THE PRETTYTABLE 0.6+ API

This tutorial is distributed with PrettyTable and is meant to serve as a “quick start” guide for the
lazy or impatient. It is not an exhaustive description of the whole API, and it is not guaranteed to
be 100% up to date. For more complete and update documentation, check the PrettyTable wiki at
http://code.google.com/p/prettytable/w/list

Let’s suppose you have a shiny new PrettyTable:

from prettytable import PrettyTable
x = PrettyTable()

and you want to put some data into it. You have a few options.

Contents 1

PTable Documentation, Release latest

2 Contents

CHAPTER 1

Row by row

You can add data one row at a time. To do this you can set the field names first using the field_names attribute,
and then add the rows one at a time using the add_row method:

x.field_names = ["City name", "Area", "Population", "Annual Rainfall"]
x.add_row(["Adelaide",1295, 1158259, 600.5])
x.add_row(["Brisbane",5905, 1857594, 1146.4])
x.add_row(["Darwin", 112, 120900, 1714.7])
x.add_row(["Hobart", 1357, 205556, 619.5])
x.add_row(["Sydney", 2058, 4336374, 1214.8])
x.add_row(["Melbourne", 1566, 3806092, 646.9])
x.add_row(["Perth", 5386, 1554769, 869.4])

3

PTable Documentation, Release latest

4 Chapter 1. Row by row

CHAPTER 2

Column by column

You can add data one column at a time as well. To do this you use the add_column method, which takes two
arguments - a string which is the name for the field the column you are adding corresponds to, and a list or tuple which
contains the column data”

x.add_column("City name",
["Adelaide","Brisbane","Darwin","Hobart","Sydney","Melbourne","Perth"])
x.add_column("Area", [1295, 5905, 112, 1357, 2058, 1566, 5386])
x.add_column("Population", [1158259, 1857594, 120900, 205556, 4336374, 3806092,
1554769])
x.add_column("Annual Rainfall",[600.5, 1146.4, 1714.7, 619.5, 1214.8, 646.9,
869.4])

5

PTable Documentation, Release latest

6 Chapter 2. Column by column

CHAPTER 3

Mixing and matching

If you really want to, you can even mix and match add_row and add_column and build some of your table in one
way and some of it in the other. There’s a unit test which makes sure that doing things this way will always work out
nicely as if you’d done it using just one of the two approaches. Tables built this way are kind of confusing for other
people to read, though, so don’t do this unless you have a good reason.

7

PTable Documentation, Release latest

8 Chapter 3. Mixing and matching

CHAPTER 4

Importing data from a CSV file

If you have your table data in a comma separated values file (.csv), you can read this data into a PrettyTable like this:

from prettytable import from_csv
fp = open("myfile.csv", "r")
mytable = from_csv(fp)
fp.close()

9

PTable Documentation, Release latest

10 Chapter 4. Importing data from a CSV file

CHAPTER 5

Importing data from a database cursor

If you have your table data in a database which you can access using a library which confirms to the Python DB-API
(e.g. an SQLite database accessible using the sqlite module), then you can build a PrettyTable using a cursor object,
like this:

import sqlite3
from prettytable import from_cursor

connection = sqlite3.connect("mydb.db")
cursor = connection.cursor()
cursor.execute("SELECT field1, field2, field3 FROM my_table")
mytable = from_cursor(cursor)

11

PTable Documentation, Release latest

12 Chapter 5. Importing data from a database cursor

CHAPTER 6

Getting data out

There are three ways to get data out of a PrettyTable, in increasing order of completeness:

• The del_row method takes an integer index of a single row to delete.

• The clear_rows method takes no arguments and deletes all the rows in the table - but keeps the field names
as they were so you that you can repopulate it with the same kind of data.

• The clear method takes no arguments and deletes all rows and all field names. It’s not quite the same as
creating a fresh table instance, though - style related settings, discussed later, are maintained.

13

PTable Documentation, Release latest

14 Chapter 6. Getting data out

CHAPTER 7

Displaying your table in ASCII form

PrettyTable’s main goal is to let you print tables in an attractive ASCII form, like this:

+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
Adelaide	1295	1158259	600.5
Brisbane	5905	1857594	1146.4
Darwin	112	120900	1714.7
Hobart	1357	205556	619.5
Melbourne	1566	3806092	646.9
Perth	5386	1554769	869.4
Sydney	2058	4336374	1214.8
+-----------+------+------------+-----------------+

You can print tables like this to stdout or get string representations of them.

7.1 Printing

To print a table in ASCII form, you can just do this:

print x

in Python 2.x or:

print(x)

in Python 3.x.

The old x.printt() method from versions 0.5 and earlier has been removed.

To pass options changing the look of the table, use the get_string() method documented below:

print x.get_string()

7.2 Stringing

If you don’t want to actually print your table in ASCII form but just get a string containing what would be printed if
you use “print x”, you can use the get_string method:

15

PTable Documentation, Release latest

mystring = x.get_string()

This string is guaranteed to look exactly the same as what would be printed by doing “print x”. You can now do all
the usual things you can do with a string, like write your table to a file or insert it into a GUI.

7.3 Controlling which data gets displayed

If you like, you can restrict the output of print x or x.get_string to only the fields or rows you like.

The fields argument to these methods takes a list of field names to be printed:

print x.get_string(fields=["City name", "Population"])

gives:

+-----------+------------+
| City name | Population |
+-----------+------------+
Adelaide	1158259
Brisbane	1857594
Darwin	120900
Hobart	205556
Melbourne	3806092
Perth	1554769
Sydney	4336374
+-----------+------------+

The start and end arguments take the index of the first and last row to print respectively. Note that the indexing
works like Python list slicing - to print the 2nd, 3rd and 4th rows of the table, set start to 1 (the first row is row 0,
so the second is row 1) and set end to 4 (the index of the 4th row, plus 1):

print x.get_string(start=1,end=4)

prints:

+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
Brisbane	5905	1857594	1146.4
Darwin	112	120900	1714.7
Hobart	1357	205556	619.5
+-----------+------+------------+-----------------+

7.4 Changing the alignment of columns

By default, all columns in a table are centre aligned.

7.4.1 All columns at once

You can change the alignment of all the columns in a table at once by assigning a one character string to the align
attribute. The allowed strings are “l”, “r” and “c” for left, right and centre alignment, respectively:

x.align = "r"
print x

16 Chapter 7. Displaying your table in ASCII form

PTable Documentation, Release latest

gives:

+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
Adelaide	1295	1158259	600.5
Brisbane	5905	1857594	1146.4
Darwin	112	120900	1714.7
Hobart	1357	205556	619.5
Melbourne	1566	3806092	646.9
Perth	5386	1554769	869.4
Sydney	2058	4336374	1214.8
+-----------+------+------------+-----------------+

7.4.2 One column at a time

You can also change the alignment of individual columns based on the corresponding field name by treating the align
attribute as if it were a dictionary.

x.align["City name"] = "l"
x.align["Area"] = "c"
x.align["Population"] = "r"
x.align["Annual Rainfall"] = "c"
print x

gives:

+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
Adelaide	1295	1158259	600.5
Brisbane	5905	1857594	1146.4
Darwin	112	120900	1714.7
Hobart	1357	205556	619.5
Melbourne	1566	3806092	646.9
Perth	5386	1554769	869.4
Sydney	2058	4336374	1214.8
+-----------+------+------------+-----------------+

7.5 Sorting your table by a field

You can make sure that your ASCII tables are produced with the data sorted by one particular field by giving
get_string a sortby keyword argument, which > must be a string containing the name of one field.

For example, to print the example table we built earlier of Australian capital city data, so that the most populated city
comes last, we can do this:

print x.get_string(sortby="Population")

to get

+-----------+------+------------+-----------------+
| City name | Area | Population | Annual Rainfall |
+-----------+------+------------+-----------------+
Darwin	112	120900	1714.7
Hobart	1357	205556	619.5
Adelaide	1295	1158259	600.5

7.5. Sorting your table by a field 17

PTable Documentation, Release latest

Perth	5386	1554769	869.4
Brisbane	5905	1857594	1146.4
Melbourne	1566	3806092	646.9
Sydney	2058	4336374	1214.8
+-----------+------+------------+-----------------+

If we want the most populated city to come first, we can also give a reversesort=True argument.

If you always want your tables to be sorted in a certain way, you can make the setting long term like this:

x.sortby = "Population"
print x
print x
print x

All three tables printed by this code will be sorted by population (you could do x.reversesort = True as well,
if you wanted). The behaviour will persist until you turn it off:

x.sortby = None

If you want to specify a custom sorting function, you can use the sort_key keyword argument. Pass this a function
which accepts two lists of values and returns a negative or positive value depending on whether the first list should
appeare before or after the second one. If your table has n columns, each list will have n+1 elements. Each list
corresponds to one row of the table. The first element will be whatever data is in the relevant row, in the column
specified by the sort_by argument. The remaining n elements are the data in each of the table’s columns, in order,
including a repeated instance of the data in the sort_by column.

18 Chapter 7. Displaying your table in ASCII form

CHAPTER 8

Changing the appearance of your table - the easy way

By default, PrettyTable produces ASCII tables that look like the ones used in SQL database shells. But if can print
them in a variety of other formats as well. If the format you want to use is common, PrettyTable makes this very easy
for you to do using the set_style method. If you want to produce an uncommon table, you’ll have to do things
slightly harder (see later).

8.1 Setting a table style

You can set the style for your table using the set_style method before any calls to print or get_string.
Here’s how to print a table in a format which works nicely with Microsoft Word’s “Convert to table” feature:

from prettytable import MSWORD_FRIENDLY
x.set_style(MSWORD_FRIENDLY)
print x

In addition to MSWORD_FRIENDLY there are currently two other in-built styles you can use for your tables:

• DEFAULT - The default look, used to undo any style changes you may have made

• PLAIN_COLUMN - A borderless style that works well with command line programs for columnar data

Other styles are likely to appear in future releases.

19

PTable Documentation, Release latest

20 Chapter 8. Changing the appearance of your table - the easy way

CHAPTER 9

Changing the appearance of your table - the hard way

If you want to display your table in a style other than one of the in-built styles listed above, you’ll have to set things
up the hard way.

Don’t worry, it’s not really that hard!

9.1 Style options

PrettyTable has a number of style options which control various aspects of how tables are displayed. You have the
freedom to set each of these options individually to whatever you prefer. The set_style method just does this
automatically for you.

The options are these:

• border - A boolean option (must be True or False). Controls whether > > or not a border is drawn around
the table.

• header - A boolean option (must be True or False). Controls whether > > or not the first row of the table
is a header showing the names of all the > > fields.

• hrules - Controls printing of horizontal rules after rows. Allowed > > values: FRAME, HEADER, ALL,
NONE - note that these are variables defined > > inside the prettytable module so make sure you import
them or use > > prettytable.FRAME etc.

• vrules - Controls printing of vertical rules between columns. Allowed > > values: FRAME, ALL, NONE.

• int_format - A string which controls the way integer data is printed. > > This works like: print
"%<int_format>d" % data

• float_format - A string which controls the way floating point data is > > printed. This works like: print
"%<int_format>f" % data

• padding_width - Number of spaces on either side of column data (only used > > if left and right paddings
are None).

• left_padding_width - Number of spaces on left hand side of column data.

• right_padding_width - Number of spaces on right hand side of column data.

• vertical_char - Single character string used to draw vertical lines. > > Default is |.

• horizontal_char - Single character string used to draw horizontal lines. > > Default is -.

• junction_char - Single character string used to draw line junctions. > > Default is +.

You can set the style options to your own settings in two ways:

21

PTable Documentation, Release latest

9.2 Setting style options for the long term

If you want to print your table with a different style several times, you can set your option for the “long term” just by
changing the appropriate attributes. If you never want your tables to have borders you can do this:

x.border = False
print x
print x
print x

Neither of the 3 tables printed by this will have borders, even if you do things like add extra rows inbetween them.
The lack of borders will last until you do:

x.border = True

to turn them on again. This sort of long term setting is exactly how set_style works. set_style just sets a
bunch of attributes to pre-set values for you.

Note that if you know what style options you want at the moment you are creating your table, you can specify them
using keyword arguments to the constructor. For example, the following two code blocks are equivalent:

x = PrettyTable()
x.border = False
x.header = False
x.padding_width = 5

x = PrettyTable(border=False, header=False, padding_width=5)

9.3 Changing style options just once

If you don’t want to make long term style changes by changing an attribute like in the previous section, you can make
changes that last for just one get_string by giving those methods keyword arguments. To print two “normal”
tables with one borderless table between them, you could do this:

print x
print x.get_string(border=False)
print x

22 Chapter 9. Changing the appearance of your table - the hard way

CHAPTER 10

Displaying your table in HTML form

PrettyTable will also print your tables in HTML form, as <table>s. Just like in ASCII form, you can actually print
your table - just use print_html() - or get a string representation - just use get_html_string(). HTML
printing supports the fields, start, end, sortby and reversesort arguments in exactly the same way as
ASCII printing.

10.1 Styling HTML tables

By default, PrettyTable outputs HTML for “vanilla” tables. The HTML code is quite simple. It looks like this:

<table>
<tr>

<th>City name</th>
<th>Area</th>
<th>Population</th>
<th>Annual Rainfall</th>

</tr>
<tr>

<td>Adelaide</td>
<td>1295</td>
<td>1158259</td>
<td>600.5</td>

<tr>
<td>Brisbane</td>
<td>5905</td>
<td>1857594</td>
<td>1146.4</td>

...

...

...
</table>

If you like, you can ask PrettyTable to do its best to mimick the style options that your table has set using inline CSS.
This is done by giving a format=True keyword argument to either the print_html or get_html_string
methods. Note that if you always want to print formatted HTML you can do:

x.format = True

and the setting will persist until you turn it off.

Just like with ASCII tables, if you want to change the table’s style for just one print_html or one
get_html_string you can pass those methods keyword arguments - exactly like print and get_string.

23

PTable Documentation, Release latest

10.2 Setting HTML attributes

You can provide a dictionary of HTML attribute name/value pairs to the print_html and get_html_string
methods using the attributes keyword argument. This lets you specify common HTML attributes like name, id
and class that can be used for linking to your tables or customising their appearance using CSS. For example:

x.print_html(attributes={"name":"my_table", "class":"red_table"})

will print:

<table name="my_table" class="red_table">
<tr>

<th>City name</th>
<th>Area</th>
<th>Population</th>
<th>Annual Rainfall</th>

</tr>
...
...
...

</table>

24 Chapter 10. Displaying your table in HTML form

CHAPTER 11

Miscellaneous things

11.1 Copying a table

You can call the copy method on a PrettyTable object without arguments to return an identical independent copy of
the table.

If you want a copy of a PrettyTable object with just a subset of the rows, you can use list slicing notation:

new_table = old_table[0:5]

25

	Row by row
	Column by column
	Mixing and matching
	Importing data from a CSV file
	Importing data from a database cursor
	Getting data out
	Displaying your table in ASCII form
	Printing
	Stringing
	Controlling which data gets displayed
	Changing the alignment of columns
	Sorting your table by a field

	Changing the appearance of your table - the easy way
	Setting a table style

	Changing the appearance of your table - the hard way
	Style options
	Setting style options for the long term
	Changing style options just once

	Displaying your table in HTML form
	Styling HTML tables
	Setting HTML attributes

	Miscellaneous things
	Copying a table

